
The Electrostatic Field and Electrostatic Potential Relationship

This is the fourth in a series of articles dealing with coaxial cables operating in the
frequency span from direct current through the microwave region. The first article, which
dealt only with currents, inductance, and magnetic fields in coaxial cables, was intended
to be a stand­alone article directed toward a readership that was assumed to be familiar
with the mathematics and physics of scalar and vector fields. Subsequently, the author
was urged to cover both the electric as well as magnetic properties of the cable from both
a circuit as well as field point of view. In order to accomplish this in a meaningful way,
now for a wider readership, the second article was entitled “Mathematics Primer for
Vector Fields”. This article treated the general mathematics of vectors as well as vector
and scalar fields and concluded with the introduction of the gradient theorem of a scalar
field. The third article in the series was entitled “Gauss’s Law and the Electrostatic Field”
in which the divergence theorem of vector analysis plays a paramount role. This article
concluded with the calculation of the electrostatic potential difference as well as the
capacitance between the center and outer conductors of a section of charged coaxial
cable. The first order of business in the present article is to justify this calculation. In
doing so it is necessary to introduce another theorem of vector analysis known variously
as the curl, circulation, or Stoke’s theorem.

As a warm­up to the curl theorem we will first work through a sample calculation
of the line integral around a closed path of a given vector field. The field in question is a
fluid velocity field given by     



v  2yz ̂  j  m­1sec­1. This describes a fluid velocity whose
direction is that of the y­axis, whose value depends on the product of the y and z
coordinates expressed in meters, and whose ultimate dimensions are meters per second.
These ultimate dimensions are obtained when y and z expressed in meters are substituted
into the expression for v. We want to calculate the line integral or circulation of this field
around the perimeter of a square that is one meter on a side as depicted in Fig. 1.

Figure 1. The closed path of circulation consists of sides a, b, c, and d each of one meter.

The portion of the path designated as a in the figure lies along the y­axis and
extends from the origin to y equal to one meter. The z coordinate is everywhere zero
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along this segment so v is also zero along a. Consequently, 

      

! 

v•dl = v• (dy ̂  j ) = 0
0

1

"" .

Proceeding around the perimeter in a counterclockwise fashion we next encounter the

side b of the figure. Here we are proceeding in the direction of increasing z so     

! 

dl = dz ˆ k .

The fluid velocity along b has a value for all z>0, but it exists only in the   

! 

ˆ j  direction so

v•dl is everywhere zero along side b. Next we encounter side c that runs from the point

y=1, z=1 to the point y=0, z=1. Along this portion, dl = dy   

! 

ˆ j  and     

! 

v = 2y ̂  j  so the

contribution to the line integral becomes 

  

! 

(2y ̂  j )• (dy ̂  j ) = 2ydy = "1
1

0

#
1

0

# . The dimensions

of this result will be m
2
 sec

-1
 as we have in effect multiplied a velocity by a length.

Finally, we have arrived at side d where the value of the y coordinate is uniformly zero

that in turn forces the fluid velocity to be zero all along d. Again there is no contribution

to the line integral anywhere along d. Therefore the line integral around the closed path

abcd becomes just that which occurred along c or 
      

! 

v•dl = "1#  m
2
sec

-1
. Since we

circulated around the closed path in the counterclockwise direction we will describe the

plane area of the square by a vector perpendicular to the plane containing the square and

pointing in the direction of the x-axis. This is so because a right-handed screw rotated

counterclockwise will advance along the x-axis in Fig. 1.

The next aspect of the curl theorem concerns the calculation of the flux of the curl

of the vector field through a surface area that is bounded by a closed path. We defined

both a path and a surface area in Fig. 1. Now we must calculate the curl of our given

vector field. The curl of v is given by the determinant

  

! 

ˆ i       ̂  j      ˆ k 

"

"x
 
"

"y
 
"

"z

0    2yz   0

= #2y ̂  i .

Finally, we calculate the flux of the curl of v through the area of the square depicted in

Fig. 1. This flux is the result of the following surface integral.

    

! 

(" # v)•dS = ($2y ̂  i )• (dz dy ̂  i ) = $1
0

1

%
0

1

%%

The curl of v has the dimensions of sec
-1

 so the flux of the curl of v dimensionally is

m
2
sec

-1
. Our final result, then, may be stated as

      

! 

v•dl = (" # v)•dS$$ .

The curl theorem is equally valid for all vector fields and when stated for the

electrostatic field in particular appears in the form

      

! 

E•dl = (" #E)•dS$$ .

In words the theorem states that the line integral of the electrostatic field around any

closed path is equal to the curl of the electrostatic field integrated over any surface having

the closed path as a boundary. From the third article in this series we learned that the

electrostatic field of a single charged particle is given by
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! 

E =
1

4"#0

q

r
2

ˆ r .

In writing the above equation we have taken the origin at the location of the charged

particle and expressed the field at a distance r from the charge employing spherical polar

coordinates with   

! 

ˆ r  being the radial unit vector. You will recall that this field is diverging

radially so that it is independent of the polar angle ! and the azimuthal angle ". The

physics of any problem is independent of the choice of coordinates although some

coordinate systems may be more convenient than others. For example, in Cartesian

coordinates the same equation would appear as

    

! 

E =
1

4"#0

q(xˆ i + ŷ  j + zˆ k )

(x2
+ y2

+ z2 )3 / 2
.

It should now be obvious why spherical polar coordinates are more suitable in this

instance! Now we will apply the left hand side of the curl theorem by calculating the line

integral of E•dl around an oval closed path as depicted in Fig. 2. We will form a closed

path by integrating from a to b then from b to c and finally from c back to a. Note that

E•dl is given by 

    

! 

1

4"#0

q

r2
ˆ r • (dr ˆ r + r d$ ˆ $ + r sin$ d% ˆ % ) =

1

4"#0

q

r2
dr .

Figure 2. An arbitrary closed path of integration in the presence of a point charge located

at the origin of coordinates. The various radial lines from the origin are ra, rb, and rc to the

points a, b, and c, respectively.

      

! 

E•dl =
1

4"#0

$ q
dr

r2
+

dr

r2
+

dr

r2

c

a

$
b

c

$
a

b

$
% 

& 
' 

( 

) 
* =

+q

4"#0

1

rb

+
1

ra

+
1

rc

+
1

rb

+
1

ra

+
1

rc

% 

& 
' 

( 

) 
* = 0.

 Any path for which the starting and ending points were the same distance from the origin

would yield an identical result. The surface over which the integration on the right hand

side of the statement of the curl theorem is carried out can have any shape as long as it

has the closed path as a boundary. The only way that this surface integral can vanish for

all possible surfaces having the given boundary and thus satisfy the curl theorem is if the

curl of the electrostatic field of a charged particle is identically zero everywhere. We
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have now learned two additional things about the electrostatic field of a charged particle.

The line integral of this field between two points is independent of the chosen path

between the points and the curl of this field is zero.

Even though the proof given above was for a single charged particle located at the

origin of our choice of coordinates, the properties of the field are independent of our

choice of origin and indeed of the particular coordinate system that we choose to employ.

Furthermore, the strength of the field of a single charged particle is linear in terms of the

amount of charge, that is, q appears to the first power. This linear behavior means that if

one has a collection of charged particles we can apply the principle of superposition in

arriving at the expression for the total electrostatic field of the ensemble of particles so

the total field is the vector sum of the individual fields or

    

! 

E = E
1
+ E

2
+  " " "

and

    

! 

" #E =" # (E1 + E2 + $ $ $) =" #E1 +" #E2 + $ $ $ = 0 .

For any electrostatic distribution of charge whether it be a single charged particle, a

collection of individual charge particles, or charged particles so densely packed as to

form a continuum on a surface or throughout a volume; the following two equations will

apply.

      

! 

E•dl = 0"
# $E = 0

.

The fact that the curl of the electrostatic field is always zero is a particularly significant

result in that it means that the electrostatic field can always be expressed as the gradient

of a scalar field. Why is this so? The answer is very simple because the curl of the

gradient of a scalar field is always identically equal to zero! We will give a general

example of this. For reasons that will be apparent presently, we choose to set     

! 

E = "#V

where V is a scalar function of Cartesian coordinates, i. e., V=V(x,y,z). First we calculate

the negative of the gradient of V to obtain 
    

! 

E = "(
#V

#x
ˆ i +

#V

#y
ˆ j +

#V

#z
ˆ k ) . Next we calculate

the curl of E to obtain 

  

! 

" (
#2V

#y#z
"
#2V

#z#y
)ˆ i + (

#2V

#z#x
"
#2V

#x#z
)ˆ j + (

#2V

#x#y
"
#2V

#y#x
)ˆ k 

$ 

% 
& 

' 

( 
) * 0. The

reason that the term in the brackets is identically equal to zero is that the order of taking

repeated partial differentiations is immaterial and as result each term in a parenthesis

within the brackets is zero. What is the physical nature of this scalar field V from which

we may extract the electrostatic field E simply by taking the negative of the gradient of

V? The answer is the subject of our next example.

Only for reasons of mathematical simplicity we again start with a single positively

charged particle of charge amount q that is fixed at the origin of a spherical polar

coordinate system. This charged particle will constitute the source of our electrostatic

field 

    

! 

E =
1

4"#0

q

r
2

ˆ r . Additionally we have a second, small positively charged particle of

charge amount qt that is movable and is initially so far removed from the position of the
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source of the field that for all practical purposes is infinitely far away. This second

charged particle is termed the test particle and is initially at rest. This implies two things.

The initial resting state means that the test particle’s kinetic energy is initially zero and

the remote location means that there is no interaction with the fixed charge at the origin

and hence there is initially no potential energy as well. What we want to do is to slowly

move the test particle along a radial path towards the source of the electrostatic field and

calculate the work that we must perform in accomplishing this task. Once we get the test

particle moving ever so slowly, the force that we must exert at each point along the way

must be equal in magnitude while oppositely directed to the force exerted on the test

particle by the electrostatic field. At each point along the radial path the force that we

exert is then –Eqt . This force is in the negative radial direction and since we are

decreasing the radial distance between q and qt the displacement that we produce is also

in the negative radial direction so F•dl is always positive. Consider that the initial

location of qt is at an infinite distance and that the final resting location of qt is at a

coordinate point called the point a, that is separated from the fixed charge by the radial

distance ra. So, the work we have performed and the potential energy acquired by the

system in the process is given by

      

! 

F •dl = "
1

4#$0%

ra

&
i

f

&
qqt

r2
dr =

1

4#$0

qqt

1

ra

"
1

%

' 

( 
) 

* 

+ 
, =

1

4#$0

qqt

ra

.

Now if we divide this result by the size of the charge that we physically moved in the

process we obtain what is called the electrostatic potential at the coordinate point as a

result of the fixed charge q at the origin of coordinates.

  

! 

Va =
1

4"#0

q

ra

What are the dimensions of this quantity? The line integral above has the dimensions of

work or Joules while the electrostatic potential, then, must have the dimensions of work

divided by charge or Joules per Coulomb. This is called a Volt. There is nothing magic

about the point a as it could be any point at a radial distance r from the origin. Therefore,

the electrostatic potential function for this simplest of cases expressed in spherical polar

coordinates is

  

! 

V = V(r) =
1

4"#0

q

r
.

The same expression in Cartesian coordinates has the form

  

! 

V = V(x,y, z) =
1

4"#0

q

x2 + y2 + z2( )
1/ 2

.

Remember that the property of the scalar electrostatic potential is such that if you know

the potential for a given charge distribution then you may extract the electrostatic field

for that charge distribution from     

! 

E = "#V . Let’s establish that this is so by using the two

expressions for the potential of a point charge given above. In spherical polar coordinates

when the potential depends only on the radial coordinate the gradient operator is 
  

! 

" = ˆ r 
#

#r

so that 

  

! 

"V = ˆ r 
#V

#r
= $

1

4%&0

q

r
2

ˆ r . E of course is the negative of this so 

    

! 

E =
1

4"#0

q

r
2

ˆ r .
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Similarly, but requiring more effort, in Cartesian coordinates the gradient operator is

  

! 

" = ˆ i 
#

#x
+ ˆ j 

#

#y
+ ˆ k 

#

#z
 and 

    

! 

E = "#V =
1

4$%0

q(xˆ i + ŷ  j + zˆ k )

(x2
+ y2

+ z2 )3 / 2
. Finally, lets consider two

separated points called i for initial and f for final in the electrostatic field of our positively

charged particle. Let the point i be closer to the particle while point f is further away. The

potential at the initial point is Vi while that at the final point is Vf and the potential

difference between the points is Vif = Vi – Vf > 0. This means that a positively charged

test particle placed at the point i will have a greater potential energy than when placed at

point f. Now let’s calculate the work done per unit of positive test charge by the

electrostatic field as it moves the test charge from the initial point to the final point.

      

! 

E•dl = "#V•dl

i

f

$
i

f

$

We learned from the gradient theorem presented in the second article in this series that

    

! 

"V•dl = dV = V
f

i

f

#
i

f

# $V
i

In comparing the two equations given immediately above we are led to the conclusion

that

      

! 

E •dl = "(Vf

i

f

# "Vi ) = Vi "Vf = Vif .

The conclusion is that the electrostatic field acts so as to always move a positive charge

from a position of high potential energy per unit charge towards a position of lower

potential energy per unit charge. The equation immediately above is the one employed in

the calculation that concluded the previous article in this series.

You very well might reasonably ask why we are always talking about positive

charge when we know that in metallic conductors only negative charges in the form of

electrons are the mobile carriers of charge. The answer is quite simple. The early

scientists such as Gilbert, Franklin, Oersted, Faraday, Ampere, Maxwell, and a host of

others performed their investigations long before the properties of the fundamental

charged particles were ever discovered much less the details of the conduction process on

a microscopic scale. These scientists had to establish a common language and set of

definitions in order to communicate their results among themselves as well as others in

order to make progress in studying the phenomena. The choice of action on or by positive

charge in deciding on the direction of an electrostatic field was an arbitrary agreed upon

choice. In fact, electrical current is a scalar quantity and has no direction whereas the

current density, that is charge per unit area per unit time, is a vector in the direction of the

electrostatic field at the point in question. We will have more on this later on. Even so, in

gaseous conductors one has positive ions as well as free electrons in motion in opposite

directions under the influence of the local electrostatic field. In electrolytes or liquid

conductors one has both positive and negative ions moving in opposite directions under

the influence of the local electrostatic field. The conclusion is that positive charge moves

in the direction of the electrostatic field whereas negative charge will move in the

opposite direction. In both instances regardless of the sign of the mobile charges the

motion under the influence of the electrostatic field will be such as to reduce the potential

Syn-Aud-Con Newsletter VOL 37 - NOV 2009 12



energy of the respective charges. The electrostatic potential itself is always a function of

the spatial coordinates and may be either positive or negative at a given point dependent

upon the nature of the charge distribution that is the source of the field. The potential

energy possessed by a given charge at some space point, however, depends on the

product of the potential at that point with the respective charge or Vq. Here is an example

that may make you feel a little more comfortable. Suppose you have two neighboring

space points A and B with the electrostatic potential at A being 5 volts while at B the

electrostatic potential is 2 volts. Clearly, VAB is 5-2=3 volts and the electrostatic field is

directed from A to B. A proton whose charge is 1.6(10
-19

) Coulomb when placed at A

will have a potential energy of  8(10
-19

) Joule and after having been moved by the

electrostatic field to the point B will have a potential energy of 3.2(10
-19

) Joule so that its

potential energy will decrease by 4.8(10
-19

) Joule as a result of the move under the

influence of the electrostatic field. Instead let’s now consider an electron. An electron has

a charge of –1.6(10
-19

) Coulomb and when placed at B has a potential energy of

 –3.2(10
-19

) Joule. As the electron’s charge is negative the electrostatic field exerts a force

on the electron and moves it in the opposite direction of the field to the point A where the

electron has a potential energy of  -8(10
-19

) Joule so that its potential energy will decrease

by 4.8(10
-19

) Joule as a result of the move under the influence of the electrostatic field. In

both instances the oppositely charged particles are moved by the field so as to decrease

their respective potential energies even though their individual motions are in opposite

directions with the proton moving from high electrostatic potential to low electrostatic

potential while the electron moves from low electrostatic potential to high electrostatic

potential.

Finally, we must point out that the electrostatic field acting alone can not maintain

the motion of charges whatever their sign in a closed conducting path because the

consequence that     

! 

" #E = 0 is that 
      

! 

E•dl = 0" . A closed conducting path begins and

ends at the same point for which the potential difference is zero. In order to maintain the

motion of charges in a closed path of whatever nature some agency must be present that

can convert some other form of energy into electrical energy. This will be the subject of a

future article.

In the next article in the series we will study the properties of dielectrics and

discuss what happens when such materials fill the space between the coaxial conductors

of our cable sample.
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