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In part 5 of this series we employed the method of images
to determine the complex mechanical impedance present at
the origin of a plane wave tube of arbitrary length when the
tube is terminated by a rigid barrier. In this article we will
explore the general technique that is applicable to plane wave
tubes having arbitrary terminations including that of a rigid
barrier, an open-ended tube, and any other given mechanical
impedance. Finally, we will consider the interaction between
a small loudspeaker employed to excite the tube and an
improperly terminated plane wave tube.

As a reminder, the mechanical impedance is defined to be
the ratio of the complex mechanical force applied to an
object divided by the resulting complex mechanical velocity
of the object

Z m =
F
u

Additionally, at any point in a sound field the ratio of the
complex acoustic pressure to the resulting particle velocity is
called the specific acoustic impedance at the point in question.

s
p(z,t)Z =
u(z,t)

Now consider a plane wave tube that is fitted with a
piston at z = 0 and mechanical impedance of ZL at the spatial
point z = L. Let the piston displacement at any time be
described by the phasor

j  t
m= e wx x

where xm is the amplitude of the piston displacement and w
is the angular frequency of piston oscillation. Remember that
the actual piston motion is given only by the real part of this
phasor namely x = xmcos(w t). In the general case ZL does
not properly terminate the tube so we must allow for both a
primary wave and a reflected wave. In which case the phasor
description of the two waves becomes
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At the origin where z = 0, the boundary condition is
satisfied by having this last expression match the given
piston motion from which it is learned that xm = A + B. 
Another independent equation is required in order to deter-
mine A and B uniquely. This equation is obtained by recog-
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nizing that at z = L the ratio of the acoustic force to the
particle velocity at that point must be equal to the mechanical
impedance at that point. It is necessary then to write the
general expressions for the acoustic pressure and the particle
velocity that are valid anywhere in the tube and particularly
at z = L.
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where s(z, t) is the condensation and r0 is the undisturbed air
density. Now the force at z = L is the acoustic pressure at that
point multiplied by the cross-sectional area, S, of the tube.
Dividing the force by the particle velocity at z = L leads to
the second equation involving A and B.
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The two independent equations for A and B are now
solved simultaneously to obtain

[ ]

[ ]

L

0m

L

0

L

0m

L

0

Z1 1+jtan(kL)
cS

A= Z2 1+j tan(kL)
cS

and

Z1 1-jtan(kL)
cS

B= Z2 1+j tan(kL)
cS

æ ö
+ç ÷rx è ø

r

æ ö
-ç ÷rx è ø

r

Knowing the values for A and B it is now possible to
evaluate x(z, t), p(z, t), and u(z, t) anywhere in the tube. In
particular, at the input of the tube where z is zero we can
determine the mechanical load or impedance that the tube
presents to the motion of the piston. This term is called Z0
and is calculated to be
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This last result is quite general and applies not only to tubes
but other shapes as well as long as the operating wavelength
is large compared with the largest dimension associated with
the structure’s cross-section. Our previous result for a tube
terminated with a rigid barrier that was calculated in part 5
of this series of articles can be readily obtained from the
general expression for Z0 by dividing both numerator and
denominator by ZL and then allowing ZL to approach infinity.
Another observation with regard to this general case that is
worthy of note is the behavior that occurs when the tube is
driven at a frequency or frequencies such that the tube length
is an integral number of half wavelengths. When this is true,
the tangent terms in Z0 are exactly zero and Z0 becomes
identically equal to ZL and the tube’s mechanical impedance
opposing the piston’s motion is the same as the
mechanical impedance that terminates the tube.
The half wavelength tube then acts as an ideal
transformer having a turns ratio of 1:1.

Rather than being terminated in a rigid barrier
or cap, suppose that the tube just ends abruptly at
Z = L while being surrounded by a very large,
ideally infinite, plane baffle. What is the terminat-
ing mechanical impedance in this instance? The
answer is not zero because the air particles at the
end of the tube must push against the outside air
contained within a 2p solid angle when they suffer
displacement by the forward traveling wave con-
tained within the tube. In fact, the air particles at
the end of the tube experience exactly the same
impedance as that experienced by the front face of
a piston that is radiating into a half space or 2p
solid angle. Alternatively, the truncated end of the
tube might just end in open space in which case the
radiation is almost unconfined or experiences near-
ly a 4p solid angle. In the latter case the acoustic
pressure is approximately one half of that of the
former case. Since the force is directly proportion-
al to the pressure, the impedance experienced by
the truncated tube less the baffle is also approxi-
mately one-half that of the infinite baffle case. In
either case, the terminating impedance is calculat-
ed through the employment of what is termed the
piston impedance function. The piston impedance
function has real and imaginary parts that are writ-
ten as R(2ka) + jX(2ka) where k = 2p / l and a is
the piston radius or, in this case, the inner radius of
the tube. The real part of the piston impedance
function can be expressed in terms of the first order
Bessel function of the first kind that we encoun-
tered in part 5 while the imaginary part can be
expressed in terms of the first order Struve function.
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These functions are graphed in Fig. 1.
The terminating impedance of a truncated tube with a

baffle expressed in terms of the piston impedance function
is ZL = r0cS[R(2ka) + jX(2ka)] while that of the truncated
tube without a baffle is approximately one half this amount.

It is very important to note that all of the foregoing takes
no account of energy losses occurring within the air or at the
interior surfaces of the tube. Air has both a viscous shear
modulus that is a loss factor at the tube surfaces and a
viscous bulk modulus that is a loss factor throughout the
enclosed volume. Heat generation and conduction in the
body of the gas and at the tube walls are even further
considerations with regard to energy loss. A pursuit of these
topics would carry us much further into the physics of fluids
than we are prepared to go here. Even though the losses are
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Figure 1. Real and Imaginary parts of the piston imped-
ance function.
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small for short tubes of reasonable diameter, their inclusion
significantly complicates the mathematics of the description
of the process. The losses could be accounted for in our
equations by allowing the propagation constant k to be
complex with the form b - ja . Replacing k in our equations
by this complex form forces the particle displacement in our
description to become

-  z j (  t  -  z ) +  z j (  t  +  z ) = Ae e  + Be ea w b a w bx
In addition to having to redo the analysis employing this

starting point, the problem is further complicated by the fact
that both a and b are frequency dependent in a complicated
fashion. The frequency dependence of b is particularly trou-
blesome because the phase velocity being w / b will no
longer be independent of frequency. The problem can be
handled exactly but the mathematics is more tedious. We
will consider our results to be a first as well as useful approx-
imation to the more exact ones.

Now we will use our approximate results to calculate the
lowest resonant frequencies of a two-inch diameter loud-
speaker whose front face is attached to a short tube of two
inches inner diameter with the far end of the tube being
terminated in a rigid cap. The back of the loudspeaker is
enclosed by a small box. The air trapped in the box and the
loudspeaker’s suspension together act as a spring with a total
stiffness of K. The suspension also furnishes a mechanical
resistance Rm. The moving mass of the loudspeaker cone is
M and the loudspeaker itself has a total mechanical imped-
ance Zls with Zls = Rm +j(wM-K/w). As we learned in part
5 the closed tube loads the front face of the loudspeaker with
a mechanical impedance that is –jr0cScot(kL). The total
mechanical impedance presented to the agency that drives
the loudspeaker is then the sum of these two impedances
with Zm = Rm + j(wM-K/w -r0cScot(kL)). The driven
loudspeaker will be at resonance for those frequencies where
the total reactance in the mechanical impedance expression
becomes zero or where wM-K/w = r0cScot(kL). In this last

equality, we replace k by w/c and then replace w by 2pf so
that both sides can be plotted versus f. The intersection
points of the two resulting curves identify the resonant fre-
quencies. This was done by employing the parameters typi-
cal of a two-inch loudspeaker mounted on a two-inch tube of
one-meter length. The results are presented in Fig. 2. For
comparison purposes, the same calculation was performed
taking account of air losses in the tube. These results are
presented in Fig. 3.

The mechanical impedance at the input of a capped tube
when the air losses in the tube are small is
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 The real part of this expression is a mechanical resistance
and along with the mechanical resistance of the loudspeaker
broadens the shape of a resonance but does not effect its
location. Setting a equal to zero reduces the impedance

expression to that which was derived without considering air
loss. There are resonances beyond the frequency range de-
picted, but the height of the red curve eventually exceeds that
of the green and there will be no further intersections beyond
such a point. ep

Figure 2. The blue curve is a plot of the cotangent reactance
function with the vertical lines indicating the points of
discontinuity of this function. The red curve is the loudspeak-
er reactance curve. Discounting the intersections at the
discontinuous jumps, in the depicted frequency range the
lowest resonance is at 165 Hz, the middle resonance at 281
Hz is close to the loudspeaker’s natural resonance without
front loading of 290 Hz, and the upper resonance is at 362
Hz.

Figure 3. The green curve is the reactance presented by the
tube including the effect of air losses. The red curve is the
loudspeaker reactance curve. The resonant frequencies indi-
cated here are essentially the same as those of Fig. 2.
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