BY DR. EUGENE PATRONIS

The Anatomy of the Wave Equation - Part 5

When a plane wave tube is excited at its origin by a
tightly fitting, oscillating piston as illustrated in Fig. 1 the
resulting wave motion is that of a plane wave propagating in
the direction of increasing z. In this motion, the acoustic
pressure and the particle velocity are uniform over the cross-
section of the tube and the particle velocity oscillates only in
the z-direction. The phase velocity of this plane wave motion
is independent of the frequency of excitation. This is not the
case for an arbitrary type of excitation nor is it necessarily
true when a compression driver excites a plane wave tube as
the emerging wave front from such a device may have some
curvature. In such instances, one must consider a more
general solution to the wave equation consistent with the
geometry of the plane wave tube.

In terms of the cylindrical coordinates, (r, 0, and z), that
are the simplest ones to employ for the geometry at hand the
general solution to the wave equation for acoustic pressure is
expressed as a product of three different functions. The first
of these functions describes how the acoustic pressure de-
pends on the radial distance from the central or z-axis of the
tube. The second function describes how the acoustic pres-
sure varies with the polar angle measured about the central
axis. The third function describes how the acoustic pressure
varies with regard to both position along the z-axis and with
time.

The radial behavior is described by a Bessel function of
the first kind of which there are many choices depending
upon exactly what mode of wave motion is involved. These
Bessel functions are ordered by a subscript m. Bessel func-
tions with orders 0 through 3 are depicted in Fig. 2.

As can be seen from Fig. 2 the Bessel functions of the
first kind appear almost as damped sine or cosine functions
of the variable x although they are not, as the zero crossings
are not periodic. One needs to refer to math tables or comput-
er based math programs to obtain detailed behaviors. The
variable x employed in Fig. 2 does not refer to the space
variable x but rather to the combination km.r where r is the
radial distance from the z-axis and km, is the radial wave
motion propagation constant. The radial propagation con-
stant kmn requires some extended discussion. First off it has
two integral indices m and n. The index m refers to the order
of the Bessel function while the index n refers to the order of
the position of the variable x in Fig. 2 where the particular
Bessel function at hand has zero slope. This zero slope is
important because an acceptable solution can only be one for
which the radial component of the particle velocity must
vanish at the rigid wall of the waveguide and this radial
component of particle velocity is proportional to the deriva-
tive of the acoustic pressure with respect to the variable r.
When r = a, the derivative of the pressure with respect to r,
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Figure 1. Plane wave tube excited by an oscillating piston at the origin.
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that is the slope, must be zero. For exam-

Bessel Functons of the First Kind

ple, let m = 1so that we are looking at the
blue curve. The first value of x beyond
the origin at which the slope of this
curve is zero is at the point x = 1.841.
This requires then that ki; must be 1.841
/ a in order for kiir = 1.841 when r
becomes equal to a. Similarly, when m
=2 so that we are on the green curve, the
first occurrence of zero slope is for x =
3.054 requiring ko; be 3.054 / a. The
significance of this can be learned from

Walue of Function

the relationship between the radial prop-
agation constant km, and the propagation
constant along the z-axis that is k,. This
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relationship is k; = [(® / ¢)? — (kmn )?]"2. 0 1
In order to have a propagating mode
along the z-axis, k, must be a real num-

ber. This will be true only for those
operating frequencies where (o / ¢)? >

(kmn)? or when ® > kmnc. Consider the mode where m = 1 and
n = 1. The frequency below which this mode cannot propa-
gate, that is the cutoff frequency, is given by fi; = 1.841c /

(2ma). Similarly, f51 = 3.054c / (2na). Table 1 lists all of the
modal cutoff frequencies in the 20 kHz audio band for a
one-inch diameter (.0254 meter) plane wave tube. The cutoff
frequencies for a two-inch diameter tube are one-half those
for a one-inch diameter tube.

m n Kimn fon (HZ)
1 1 1.841/a 7936
2 1 3.054/a 13166
0 2 3.832/a 16520
3 1 4.20/a 18106

Table 1. Cutoff frequencies in the audio band for a
one-inch diameter plane wave tube.

The modes listed in Table 1 are dispersive modes. They
propagate at operating frequencies above their respective
cutoff frequencies, but do so with a frequency dependent
phase velocity. This means that different frequency compo-
nents of a wideband signal above cutoff propagate with
different speeds and wave shapes are not preserved. The
phase velocity measured along the z-axis is given by
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Figure 2. Bessel functions Ju(x) for orders m = 0 through m = 3.
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Below its respective cutoff frequency, each mode be-
comes evanescent. This means that the mode does not propa-
gate or transport energy along the z-axis but rather its
pressure contribution attenuates exponentially with distance
from the origin.

A reasonable question to ask at this point is, “What
does the solution look like with all of these added complica-
tions?” The answer is a sum over all indices that can contrib-
ute for a given operating frequency or range of operating
frequencies of pressure terms of the following structure

Pmn(T, 0, Z, t) = AmnJm(kmnr)cos(mO)cos( ot — k,z ).

In the above equation Am, are amplitude factors deter-
mined by the conditions at the exciting source. These ampli-
tude factors differ depending on the values of m and n,
namely on the particular mode involved. All of these non-
planar modes have non-uniform pressures as well as polari-
ties over the cross section of the waveguide. The next ques-
tion should be, “Where is our familiar plane wave solution in
all of this?” The answer again lies in a further examination
of Fig. 2. Notice that when m = 0, the function Jo has zero
slope when x = 0, that is right at the origin. For this case, not
only is m = 0 but n and koo are zero as well while Jo( koor )
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has the value of one independent of r. As m = 0, cos(m0) is
unity independent of the angle 6 and the solution becomes
the familiar

p(z,t)=Acos( ot —k;z)

with A being the pressure amplitude at the face of the piston
that is uniform over the cross section of the tube. Further-
more, as koo is zero, the phase velocity is a constant value ¢
at all frequencies.

Next we turn our attention to tubes of finite length that
are excited only with plane waves but have arbitrary termina-
tions. A good starting point is a tube with length L excited by
a piston as in our original case but which is terminated by a
rigid barrier at its receiving end. This situation is depicted in
the upper half of Fig. 3.

As the piston begins to move in the actual structure a
plane wave propagates in the positive z-direction reaching
the rigid barrier after a time lapse of L / c. As the barrier is
rigid, there can be no particle displacement or velocity at the
barrier at any time. The wave is reflected and then travels in
the negative z-direction back to the source where it is again
reflected but now by the moving piston. This process contin-
ues to repeat itself over and over and after numerous transits
back and forth arrives at a steady state condition with the
boundary conditions at the piston matching those of the
piston’s motion and those at the barrier corresponding to
zero particle displacement as well as velocity. In the region
0 <z <L we ultimately have the superposition of two waves
traveling in opposite directions. The wave equation is linear

so the principle of superposition is applicable in arriving at a
solution for a particular case. Furthermore, the solution to the
wave equation that satisfies the given boundary conditions is
unique so we can treat the problem by analyzing the equiva-
lent structure in the lower half of Fig. 3 that is based on the
method of images. In this technique the red piston is the
actual source and the blue piston is the image source that is
located just as far to the right of the barrier as the actual
source is located to the left of the barrier. When the red
piston displaces to the right, the blue piston displaces similar-
ly to the left. In the equivalent structure there is no barrier at
z =L although its position is indicated in the drawing. In the
active interval 0 <z < L in which our solution will apply we
sum the individual waves generated by the real source and
the image source. When the red piston moves to the right the
air in front of it is compressed so it produces a pressure wave
given by pr = pmcos(ot — kz) where pm is the pressure
amplitude and k is the propagation constant along the z-axis.
Here we have dropped the subscript on the propagation
constant as we are dealing only with a plane wave. Similarly,
when the image piston moves to the left it produces a pres-
sure wave p, = pmcos(mt + kz"). The situation with regard to
the particle velocity is decidedly different however. The
particle velocity wave generated by the red piston is u, =

umcos(wt — kz), but when the blue piston moves to the left,
the air particles are moving in the negative direction so u, =
-Umcos(wt + kz"). Furthermore, z" = z - 2L so in the active
interval 0 <z <L the total acoustic pressure is given by p =
pmcos(ot — kz) + pmcos(ot + kz — 2kL) while the total

Figure 3. Tube terminated

f f by a rigid barrier.
z=0 z=L
Actual Structure
z=0 z=L zZ=0
z =-L z=2L

Equivalent Structure
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particle velocity is given by u = umcos(®t — kz) — umcos(wt +
kz — 2kL). These composite expressions describe standing
waves. Our traveling waves in opposite directions have
combined to form standing waves of both acoustic pressure
and particle velocity. Now at the barrier where z = L, the
acoustic pressure is p = 2pmcos(wt — kL). This means that the
pressure amplitude is doubled signifying that a normally
incident pressure wave is reflected in phase at a rigid barrier.
On the other hand, the particle velocity at the barrier as given
by u = umcos(mt — kL) —umcos(wt — kL) is identically zero at
all times indicating that a normally incident particle velocity
wave is reflected with a change of polarity or a phase shift of
n radians at a rigid barrier. The important question is, “What
are the conditions at the origin where the red piston is
located?”” Upon setting z = 0 in the general equations we find
that the total acoustic pressure at the origin is now p =
pmcos(®t) + pmcos(mt — 2kL). Now it is important to remem-
ber at this point that all angles are expressed in radians.
Suppose that the length L is exactly A / 4 at the operating
frequency of the piston. Upon remembering that k =2m / A,
then 2kL =2(2rt / A)(A / 4) = m. When this is the case, the two
pressure terms differ in phase by n and their sum is zero at
all times t. This is a resonant condition. The acoustic pressure
being identically zero means that the piston motion is com-
pletely unimpeded. This will be true also when L is any odd
integral multiple of A / 4. This ideal is never exactly achieved
in practice because there are always some very small viscous
losses at the walls of the tube and the amplitude of the blue
piston motion is always slightly less than that of the red piston.

The conditions that exist at the exciting piston for a tube
of arbitrary length L terminated in a rigid barrier are usually
studied by means of the mechanical impedance presented to
the piston as a result of its interaction with the air at the
origin. This mechanical impedance is the ratio of the com-
plex force acting on the air at the piston face to the complex
particle velocity of the air at the piston face. The complex
force is the acoustic pressure at the origin expressed as a
complex exponential or phasor multiplied by the cross sec-
tional area of the tube. The complex particle velocity is the

Dr. Patronis' entire series What Is Waving and Why
is available as a single PDF here.
We encourage you to add it to your technical library.
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complex exponential statement of the particle velocity also
at the origin. Complex exponentials and phasors are de-
scribed in detail in Chapter one of Sound System Engineering,
Third Edition. The mechanical impedance then is calculated
from

B pms ej(nt +ej(u)t—2kL)
- _ ej(wt—ZkL)
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This can be simplified by factoring and canceling common
terms in both the numerator and denominator to yield,
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The conclusion is that the mechanical impedance present-
ed to the piston is a negative reactance for positive values of
the cotangent as indicated by the negative j in the final
statement. If there were no viscous losses this impedance
would be zero at the resonant condition where L equals odd
integral multiples of A / 4 and would be infinite for the
anti-resonant condition where L equals integral multiples of
A / 2. The fact that the mechanical impedance is purely
reactive means that once steady state conditions are reached
the average power supplied by the piston becomes zero in the
ideal case. It also means that the acoustic pressure and
particle velocity in the standing wave differ in phase by /2
radians or 90°.

Next time we will deal with a tube having an open end
termination and explore the tube’s influence on the motion
of a small loudspeaker used to excite the tube. ep
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