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This is the first of what hopefully will be a continu-
ing series of articles dealing with the fundamental phys-
ics of sound waves. Unlike electromagnetic waves that 
can exist in a vacuum as well as in material substances, 
sound waves are mechanical waves and require a ma-
terial medium in which to exist. The medium may be 
either a solid such as a bar of steel or a fluid such as 
water or air. Fluids are distinguished from solids in that 
a fluid will assume the shape of the container in which 
it is placed. If the fluid in question is a liquid of small 
volume, however, it will not occupy all of the space pro-
vided by a container of larger interior volume whereas 
a gaseous fluid will occupy all of the interior space pro-
vided by the container. In the process of doing so, the 
pressure, temperature, and the energy content of the gas 
must undergo adjustments to make this possible. The 
thrust of this series of articles is to learn in a fundamental 
way that wave properties such as speed, dispersion, mo-
mentum transfer, energy transport, and guidance depend 
upon both physical law and the properties of the host 
medium. Along the way we will encounter all of the fa-
miliar wave properties such as interference, diffraction, 
and refraction as well as phase and group velocity. It is a 
fact that air borne sound plays a dominant role in sound 
reinforcement and room acoustics so we will begin our 
study with air considered to be the supporting medium 
for our initial treatment of sound waves.

Air is a mixture of several different gaseous compo-
nents with the principal ones being displayed in Table 
1 as molecular fractions of the total composition. The 
numbers displayed as decimal fractions are for dry air. 
Normal air also contains water vapor. This does not ap-
pear in the table, as it is a varying quantity depending 
upon the weather conditions. The major acoustic influ-
ence of the moisture content of air is that of a frequency 
dependent conversion of sound energy into heat. This 
process will be described at the appropriate time.

 
Gas Symbol Fraction

Nitrogen N2 0.78040

Oxygen O2 0.20946
Argon Ar 0.00934

Carbon dioxide CO2 0.00038

Table 1. Principal components of dry air at sea level.

Note that if you sum the fraction column the result 
will be slightly less than one. The reason for this is that 
dry air also contains trace amounts of hydrogen, helium, 
neon, krypton, xenon, radon, and methane. The fractions 
presented in the table are the molecular fractions rather 
than the mass fractions. This means that if you take a 
sample of dry air at sea level 78.040 % of the molecules 
in the sample will be diatomic molecules of nitrogen 
while 20.946 % will be diatomic molecules of oxygen, 
etc. We could construct a similar table where fractions of 
the total mass rather than fractions of the total number of 
molecules represent the various components. The mass 
fractions would be different because, for example, mol-
ecules of oxygen have greater mass than do molecules 
of nitrogen. In discussing molecular masses associated 
with a sample of substance that you might encounter in 
everyday life, i. e., a macroscopic sample we usually re-
fer to a mole of the substance. The mole is one of the 
seven SI base units and is called quantity of substance. 
The mole has the value 6.02(1023) which is Avogadro’s 
number. You can have a mole of anything. A mole of 
dollars would be $6.02(1023). With that amount of mon-
ey you could give to each person on earth an amount 
equal to the national debt of the US and never miss it! A 
mole of dry air has a mass of 0.02898 kilogram. This is 
called the molar mass of dry air. The molar mass will be 
represented in this article by M.

Reference conditions for a standard atmosphere are 
usually taken as the pressure at sea level with a tempera-
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ture of 0 °C. This temperature on the Celsius or centigrade 
scale corresponds to 273.15 K on the absolute or Kelvin 
temperature scale. You should note that we did not write 
°K because K alone stands for degrees on the absolute 
temperature scale. Note also that the degree increments 
on each scale are the same size so any temperature read-
ing on the Celsius scale can be converted to absolute 
simply by adding 273.15. The standard atmosphere has 
a static or undisturbed pressure of 1.01325(105) Pascals 
and a density of 1.293 kg•m-3. A sound with a SPL of 94 
dB corresponds to an rms acoustic pressure of 1 Pascal. 
This moderately loud sound, which represents a distur-
bance away from static conditions, perturbs the atmo-
spheric pressure less than one part in 105. Accompany-
ing the pressure disturbance there are also disturbances 
in the local air’s density and temperature. In order to un-
derstand this we must consult what is called the equation 
of state of a gas. Furthermore the sound source feeds 
acoustic energy into the air. In order to get a handle on 
this we must consult the first law of thermodynamics.

The equation of state of an ideal gas as given by the 
ideal gas law says 

PV = nRT 

where P is the total pressure exerted by the gas on 
the walls of the containing vessel, V is the interior vol-
ume of the container, T is the absolute temperature of 
the gas, n is the number of moles of the gas in the con-
tainer, and R is the universal gas constant. The value of 
R is 8.3145 Joule•mole-1•K-1. An ideal gas would be one 
in which collisions between individual molecules of the 
gas as well as collisions with the walls of the container 
would be perfectly elastic, in which both momentum and 
kinetic energy are conserved in the collision processes. 
Real gases do not obey the ideal gas law under all pos-
sible conditions. The ideal gas law was determined by 
experimentally studying the behavior of real gases as a 
function of the gas density. With sufficiently low densi-
ties all real gases were found to follow the same equa-
tion of state that has become to be known as the ideal gas 
law. The behavior of air in the temperature and pressure 
ranges that we normally encounter in everyday life fol-
lows the ideal gas law with little error. We should note 
at this point that the ideal gas law could be expressed 
by using the gas density rather than the gas volume as a 
variable of interest. Let the total mass of our sample of 
gas be represented by m. Then the number of moles in 
our sample of gas would become m/M and we can write 
the following sequence of equations:

� 

PV = nRT

PV =
m

M
RT

P =
m
V

R
M

T

P = r R

M
T

In the last equation the mass per unit volume or den-
sity of the gas is represented by the Greek letter rho.

The first law of thermodynamics in simple terms 
states that the change in the internal energy of a physical 
system is equal to the heat energy added to the system 
less the work done by the system. If we let Q represent 
the added heat energy and W represent the work done, 
then ∆U = Q-W, where ∆U stands for the change in in-
ternal energy. In the case of a system composed of an 
ideal gas, the internal energy is associated only with the 
kinetic energies of the molecules composing the gas. The 
individual molecules in such a gas undergo random mo-
tions throughout the volume of the gas and have speeds 
that can change from moment to moment as a result of 
collisions with other molecules or with the walls of the 
containing vessel. Monatomic molecules such as Ar can 
only have kinetic energies associated with translations 
in the three perpendicular spatial directions. We say 
such molecules have three degrees of freedom. Diatomic 
molecules such as N2 and O2 in addition to translation 
can have kinetic energies associated with rotations about 
two perpendicular axes. Such molecules are said to have 
five degrees of freedom. Finally, polyatomic molecules 
such as CO2 can potentially perform distinct rotations 
about three mutually perpendicular axes and have six 
degrees of freedom. Kinetic theory tells us that for each 
molecule in the gas there is on the average a kinetic en-
ergy that is proportional to kT where k is Boltzman’s 
constant with k being equal to R divided by Avogadro’s 
number or 1.38(10-23) Joule•K-1. The significance of this 
is that the internal energy of an ideal gas or a real gas 
that behaves as an ideal gas is directly proportional to 
the absolute temperature alone. Regardless of the com-
plexity of a molecule’s structure, each molecule in the 
gas has an average translational kinetic energy of 3/2 
kT. Knowledge of a molecule’s average kinetic energy 
allows the calculation of the root mean square molecular 
speed. The formula for this calculation is

� 

vrms =
3RT

M
.
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If you apply this formula to air at standard condi-
tions vrms will be found to be 485 m•sec-1.

As a result of many experiments it has been deter-
mined there are two types of air compression and expan-
sion processes associated with sound waves. The first 
and simplest of these occurs normally at ultrasonic fre-
quencies, well above the audible spectrum but can also 
occur in a sealed box loudspeaker enclosure which is 
completely filled (except for the volume occupied by 
the speaker) with loosely packed fiberglass. This is the 
isothermal process. The second process is known as the 
adiabatic process and is applicable in free air throughout 
the audible spectrum and beyond. An isothermal process 
is one in which the gas temperature and hence its inter-
nal energy remains constant. An inspection of the ideal 
gas law for a fixed quantity of gas and a fixed tempera-
ture reveals that the isothermal process is described by 
PV= CT where CT is just a constant. For one mole of 
air at standard conditions CT =2270 Joule. An adiabatic 
process is one in which heat energy is neither added nor 
subtracted. For an adiabatic process not only must the 
pressure-volume relationship follow the ideal gas law it 
must also satisfy PVγ = CQ where CQ is a constant that 
depends on the state of the gas and γ is a constant for 
the particular mixture composing the gas. For air γ has 
the value of 1.402 and is dimensionless whereas for one 

mole of air at standard conditions CQ has the value 493 
with the strange dimensions of Pascals•(m3)γ . A mole of 
any ideal gas under the standard conditions of sea level 
atmospheric pressure and a temperature of 273.15 K oc-
cupies a volume of 0.0224 m3 regardless of the type of 
expansion or compression process that may occur. This 
is illustrated in Fig. 1 for one mole of air where a com-
parison is made between plots of the pressure-volume 
relationship for both an isothermal and an adiabatic pro-
cess.

At the intersection point of the two curves, the gas 
pressures, volumes, and temperatures are the same. In 
the isothermal process, the first law of thermodynamics 
tells us that when air does an amount of work W against 
an outside agency in expanding beyond the intersection 
point, an amount of heat Q equal to W must be added to 
the air in order to maintain the temperature T at a fixed 
value. Conversely when an outside agency compresses 
the gas and thus does work on the gas while reducing 
its volume, a corresponding amount of heat energy must 
be removed from the gas in order to maintain a constant 
T. With a constant temperature there is no change in the 
internal energy of the gas in either circumstance. In the 
adiabatic process, however, no heat energy is added or 
removed so when the gas does work during expansion, 
the gas itself must supply this energy. As a consequence 

Figure 1. Isothermal-Adiabatic 
comparison. The two curves 
have a common point at stan-
dard pressure and temperature 
with a volume of 0.0224 m3.
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the internal energy of the gas decreases and the gas tem-
perature drops. Conversely, of course, when an outside 
agency compresses the gas adiabatically, work is done on 
the gas rather than by the gas and the internal energy of 
the gas increases by an amount equal to the work done. 
This manifests itself as an increase in gas temperature.

We have mentioned the work done on or by a gas 
several times without divulging how the work is deter-
mined. We hasten now to remove that omission. Sup-
pose the gas is air and it is contained in a cylinder that 
has a tightly fitted piston upon which we can exert a 
sufficient force to move the piston inward so as to com-
press the gas adiabatically. Alternatively, we can relax 
our force on the piston somewhat and allow the gas to 
expand adiabatically and thus push the piston outward. 
In order to do this the entire apparatus must be thermally 
insulated from the external environment so that heat en-
ergy cannot leak in or out during the process. The formal 
definition of the work done by the gas in the process of 
the volume changing from an initial value Vi to a final 
value Vf is given by the following integral equation.

� 

W = PdV
Vi

Vf

∫

This integral has a geometrical interpretation. It 
actually calculates the area that lies beneath the plot of 
pressure versus volume between the limits of Vi and Vf. 
When the final value of volume is greater than the initial 
value the numerical value of the calculation is positive 
indicating that the gas has done work against the piston 
while expanding. If the opposite is true, final volume 
less than initial volume, the numerical value is nega-
tive indicating that the piston has done work on the gas 
by compressing it. We should also observe that if we 
multiply the dimensions of pressure by the dimensions 
of volume we obtain the dimensions of energy thusly, 
Newton•m-2•m3 = Newton•m. A Newton•m is of course 
a Joule. An example of this is displayed in Fig. 2 where 
a mole of air is compressed from an initial volume of 
0.022 m3 to a smaller volume of 0.018m3.

The value of the integral is –478 Joules with the mi-
nus sign indicating that work was done on the gas. In 
other words, the agency pushing the piston did a work 
of 478 Joules in compressing the gas. This amount of 
energy is potential energy stored in the compressed gas 
because the gas could do this amount of work on the 
piston in expanding back to its original state. You can 
visually do a rough calculation of the area under the 
graph by noting that each complete crosshatched block 
has an area of 0.002•20,000 or 40 Joules and there are 11 

Figure 2. Adiabatic compres-
sion of air. The crosshatched 
area represents the work done 
on the gas during compression.
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complete blocks and a slightly less than complete partial 
block. The eleven complete blocks correspond to 440 
Joules. 

Finally, we are ready for an acoustical calculation 
of some importance. We previously mentioned that an 
adiabatic process was described by PVγ = CQ where the 
constant CQ depends on the quantity of air involved. An 
alternative description of an adiabatic process for air in 
the atmosphere that is independent of the amount of air 
involved is 

� 

P =
r
r0

 

 
 

 

 
 

γ

P0.

In this equation P is the total air pressure when the 
air density is ρ and P0, ρ0 are the values of the air pres-
sure and density under standard conditions. Fig. 3 illus-
trates this behavior.

If we examined the curve in the vicinity of the mark-
er on a greatly magnified scale the curve would appear 
to be a straight line and we could determine its slope 
graphically. This slope describes the ratio of a small 
change in pressure to a small change in density. Alter-
natively, we could employ the methods of differential 
calculus and precisely determine a value for the slope. 
Calling this slope c2, the slope of the curve at the posi-
tion of the marker is

 

� 

c2 = γ P0

r0

. 

Upon inserting the values for standard air pressure 
and density c2 is found to be 109866.71 with the dimen-
sions of Newton•m•kg-1 = m2•sec-2. The obvious next step 
is to extract the square root to find c = 331.46 m•sec-1. 
This result should be familiar as it is the speed of sound 
in air at a temperature of 273.15 K! This of course is 
interesting and the explanation for it will be forthcom-
ing. It is not, however, the calculation that is to close this 
article. Let us turn our attention to a cubic centimeter of 
air under standard conditions. A cubic centimeter is 10-6 
cubic meter so our sample contains a mass of 1.293(10-

6) kg or one milligram of air. Let our air sample be in 
contact with some vibrating object such that the sample 
is momentarily compressed by a very small amount. The 
one-milligram of air now occupies a smaller volume so 
its density has increased and this is accompanied by an 
increase in the air pressure in the sample itself. Let the 
new pressure be P = 101326 Pascal. The undisturbed 
pressure was P0 = 101325 Pascal. What we call acoustic 
pressure, p, is the difference between these two numbers 
so p = P-P0 = 1 Pascal. Now we can use the slope on Fig. 
3 to calculate the change in density from p = c2(ρ−ρ0). 

Figure 3. Air pressure versus density. 
The marker indicates the position of the 
point (P0 ,r0).
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Remember the slope is pressure change divided by den-
sity change. We can solve for ρ to find ρ = 1.293009102 
kg•m-3. We started with a mass of air of 1.293(10-6) kg 
that was contained in an initial volume V0 of 10-6 m3. 
We still have the same mass of air but now in a smaller 
volume V. Making use of this fact we can write

ρ0V0 = ρV. Solving this for V we find that V = 
9.99929606(10-7) m3. The change in volume in the com-
pression process is then V-V0 = -7.039393602(10-12) m3. 
The result of this is that there is now energy stored in 
our compressed sample of air. A portion of this stored 
energy is called acoustical potential energy and is repre-
sented by the work that can be performed by the acoustic 
pressure as the sample expands back to its original vol-
ume against the external pressure of the surrounding air. 
This work can be determined from Fig. 4 in which the 
acoustic pressure is plotted versus the size of the volume 
change.

The work that can be performed by the acoustic 
pressure as the sample expands back to normal size is 
the area included in the triangle and in this case is one-
half the altitude times the base or 0.5•7.039393602(10-

12) Pascal•m3 = 3.5197(10-12) Joule. We can calculate this 
directly using the equation for acoustical potential en-
ergy that is obtained through the full use of calculus.

Figure 4. The acoustical poten-
tial energy is the area of the tri-
angle.
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The equation given above is an important result that 

we will make full use of in the next episode of this saga 
where we will see the origin of the wave equation and 
use it to explain what goes on in plane wave tubes for 
a variety of terminations. We will encounter traveling 
waves and standing waves as well as acoustical energy 
transport.  ep

“There is hardly anything in the world 
that some man can’t make a little worse and 
sell a little cheaper, and the people who 
consider price only are this man’s lawful 
prey.”
	                      John Ruskin - 1850


