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BY Dr. Eugene patronis

What is Waving
and Why?

 The Anatomy of the Wave Equation - Part 3

At the conclusion of the second article in this series 
we had the plane wave equation in hand and had learned 
the properties that must be exhibited by a mathematical 
function if it were to be a solution to the wave equation 
for a given set of physical circumstances. Now it is time 
to apply what we have learned towards the study of the 
wave motion in a plane wave tube that is excited by an 
oscillating piston as depicted in Fig. 1.

For simplicity, we will consider the circumstance 
where the piston, depicted in red, has been forced to un-
dergo oscillatory motion for some time by a mechanism 
not shown in the figure and continues to do so as we 
study the problem. We will start measuring time from 
the instant when the right face of the piston is just pass-
ing z = 0 and is moving to the right such that the piston’s 
displacement from z = 0 is described by x = xm sin(wt) 
where xm is the amplitude of the piston displacement, 
w = 2pf with f being the frequency of oscillation in Hz, 
and t is the time. Now we want to find a solution to the 
wave equation for air particle displacement in the tube 
that satisfies these conditions. The tube is infinitely long 
so there can be no reflections from the receiving end. As 
a consequence, we need only a solution that describes a 
wave traveling to the right. The air in contact with the 
piston undergoes the same motion as does the piston it-
self so we propose as a solution an expression that dupli-

cates the piston motion when we let z = 0

                           ( )m= sin  t-kzξ ξ ω

We also learned last time that in order for a solu-
tion to legitimately describe a plane wave propagating 
in the direction of increasing z that the space and time 
variables must appear in the form (ct - z). We can easily 
show that our proposed solution satisfies this require-
ment as follows. The quantity k is called the propaga-
tion constant and is defined as k = 2p / l where l is the 
wavelength. Now as w is 2pf and w / k is lf = c, then if 
we factor k out of our parenthesis in our proposed solu-
tion, the solution will take the form

		  [ ]m= sin k(ct - z)ξ ξ

Since the two expressions for the particle displace-
ment are equivalent we may use either form to suit our 
convenience. Next, it is necessary to show that our pro-
posed solution when substituted into the wave equation 
produces an identity. In accomplishing this it is neces-
sary to take partial derivatives of our proposed solution 
first with respect to z and then with respect to t. The 
first partial derivative with respect to z finds the slope of 

To infinity

z = 0
Figure 1. Plane wave tube that is fitted with an 

oscillating piston.
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the solution when z is allowed to change while t is held 
at a constant value. Similarly, the second partial deriva-
tive with respect to z finds the slope of the slope curve 
while z is allowed to change with t being held constant. 
The process is then repeated except now t is allowed to 
change while z is held at a constant value. The results 
are found to be

		

2
2

m2

2
2

m2

=-k sin(  t-kz)
 z

=- sin(  t-kz)
 t

∂ ξ ξ ω
∂
∂ ξ ω ξ ω
∂

The wave equation tells us to divide the second 
partial derivative with respect to t by c2 and equate the 
result to the second partial derivative with respect z. If 
an identity results from this action then our proposed 
solution does indeed satisfy the wave equation. Upon 
dividing the second equation immediately above by c2 
and equating it to the first equation immediately above 
we obtain 

	

2
2

m m2- sin(  t-kz)=-k sin(  t-kz)
c
ω ξ ω ξ ω

This is indeed an identity because k = 2p/l = 2pf 
/ c = w / c. Finally, when we let z = 0, our air particle 
displacement agrees with the piston motion at all times t 
including t = 0. Therefore our proposed solution satisfies 
all of the requirements necessary to be the one and only 
solution to the problem. 

What about the particle velocity and the acoustic 
pressure? We obtain the particle velocity from the partial 
derivative of the particle displacement with respect to t.

		
mu= = cos(  t-kz)

 t
∂ξ ωξ ω
∂

The acoustic pressure is obtained from 
2

0- c
z

∂ξρ
∂  . 

We learned this in the second article of this series 
of articles.

		
2

0 mp= c k cos(  t-kz)ρ ξ ω

It is important to note that if we divide the acoustic 
pressure expression by that of the particle velocity we 
obtain a quantity called the specific acoustic impedance 
of air for plane waves namely,

		

2
0

s 0
c kp =Z = = c

u
ρ ρ
ω

Here the capital letter Z represents impedance rather 
than the spatial coordinate and the subscript s stands 
for specific. The specific acoustic impedance of air for 
plane waves is a real number denoting the fact that the 
acoustic pressure and particle velocity are in phase. The 
dimensions of Zs are kg·m-2·sec-1. This combination is 
called a Rayl in honor of Lord Rayleigh who was a pio-
neer in the study of sound and acoustics.

Now we will put the theory into practice with a re-
alistic numerical example. Let the frequency of oscilla-
tion of the piston be 1000 Hz and let its displacement 
amplitude be 10-6 meter. Let the static air pressure be the 
sea level value but let the temperature be a comfortable 
70° F. This corresponds to 21.11° C or 294.26 K. The 
static air density is inversely proportional to the absolute 
temperature so then r0 = 1.293( 273.15 / 294.26 ) = 1.20 
kg·m-3. The speed of sound is directly proportional to the 
square root of the absolute temperature so c = 331.46( 
294.26 / 273.15 )0.5 = 344 m·sec-1. The air particle dis-
placement amplitude matches that of the piston so xm = 
10-6 m. The angular frequency w = 2pf = 6,283 radians 
/ sec. The propagation constant k = w/c = 18.265 m-1. 
The velocity amplitude is um = ckxm = wxm = 6.283(10-3) 
m·sec-1. The acoustic pressure amplitude pm = r0cum = 
2.5937 Pascal. The rms pressure for sinusoidal time de-
pendence is the amplitude multiplied by 0.7071 and is 
1.834 Pascal. This corresponds to a SPL of 99.25 dB. 
The wavelength l = c/f = 0.344 meter. Our solutions 
for the acoustic variables expressed as functions of both 
position and time are then

-6

-3 -1

6,283 18.265=10 m•sin t- z
sec m

6,283 18.265u=6.283(10 )m•sec •cos t- z
sec m

6,283 18.265p=2.5937 Pa•cos t- z
sec m

ξ  
 
 

 
 
 

 
 
 

Given that the piston has been oscillating for some 
time, Fig. 2 depicts the acoustic pressure wave propaga-
tion along a one-wavelength interval of the z-axis ver-
sus elapsed time commencing from the instant when the 
piston is located at z = 0 and is moving in the positive z 
direction.

Now for a pop quiz! If we were to construct a ninth 
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entry to Fig. 2 corresponding to t =. 001 second, how 
would it look? Hint: .001 second corresponds to the pe-
riod of the motion of the piston and is equal to the time 
required for the pressure wave to travel a distance of 
one wavelength along the z-axis. This being the case, 
the ninth entry would look exactly like the first. Further-
more, a slight modification of Fig. 2 would allow it to 
describe the particle velocity as well. This modification 
would involve only a change of scale and label for the 
vertical axes as the particle velocity is in phase with the 
acoustic pressure for a plane wave in air.

Now that we have established the behavior of the 
sound wave in the tube it is appropriate to consider what 
the piston’s motion must accomplish to bring about this 
behavior. The piston of course is displacing the air adja-
cent to its right hand face. The piston must exert a force 
on the air in order to displace it and this requires that 
the piston perform work on the air. The force, F, exerted 
by the piston at any instant is the acoustic pressure at 
z = 0 multiplied by the cross-sectional area of the tube 
namely, S.

		  mF= Sp cos(  t)ω

The rate at which the piston is performing work on 
the air is the instantaneous power or P and is obtained 
by multiplying the applied force by the rate of displace-
ment at z = 0. The rate of displacement at z = 0 is just the 
particle velocity at the origin so

2
m m m m = Sp cos(  t)•u cos(  t)= Sp u cos (  t)P ω ω ω

Fig. 3 is a plot of this result for one period of the pis-
ton motion using the values from our numerical example 
when applied to a plane wave tube having an inner di-
ameter of 1 inch or 0.0254 m.

Fig. 3 displays two items of interest: the plot of the 
instantaneous power versus time and the area beneath 
the power curve that is shaded blue. Since the average 
value of the cos2 over one period is 1/2 the area under the 
curve is 1/2 Pm·0.001 sec. For our example this would 
be 4.1288(10-9) Joule. This area accounts for the total 
acoustic energy delivered to the sound wave during one 
period of the piston’s motion. One can reasonably in-
quire as to where this energy resides in the sound wave. 
The acoustical energy associated with a plane wave ap-
pears in two forms. First there is acoustic kinetic energy 
associated with the motion of the air particles themselves 
and then there is acoustic potential energy associated 
with the existence of acoustic pressure. We encountered 
the concept of acoustic potential energy in part one of 
this series of articles. This acoustic energy is not local-
ized at a point but rather is distributed throughout the 
volume occupied by the wave with an energy density 
that varies as a function of position and time. If we let e 
represent the total acoustic energy density while ek and 
ep represent the kinetic and potential energy densities, 

Figure 2. A depiction of 
successive shifts of the 
pressure waveform along 
the z-axis as time increases.
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respectively, then

      

2 2
2

k p 0 2 2
0 0

1 1 p p =  +  = u  +  = 
2 2 c c
ρ

ρ ρ
e e e

The last step in the above equation is justified be-
cause for a plane wave in air the particle velocity and 

acoustic pressure are related through 0

pu = 
cρ  thus 

making the kinetic and potential energy densities equal 
with each being one-half of the total energy density. 
The total acoustic energy density is also a function of 
position and time. Using the data from our numerical 
example the total acoustical energy density expression 
becomes

-5 -3 2 6,283 18.265 = 4.7374(10 ) Joule•m •cos t - z
sec m

 
 
 

e

Fig. 4 is a plot of this energy density for a one-wave-
length interval along the z-axis at the instant when t = 
0.001 seconds. This corresponds to an elapsed time of 
one period of the piston motion.

Now we are in a position to calculate the total 
acoustic energy contained in the plane wave tube for a 

Figure 3. Instantaneous power delivered by the piston 
to the air in the plane wave tube. The blue area is the 
acoustic energy delivered to the sound wave in one 

period of the piston’s motion.

one-wavelength interval along the z-axis. If we draw a 
horizontal line across the peaks of the curve, we will 
now have a rectangle whose area numerically is (0.344)
(4.7374)(10-5). By visual inspection, however, the actual 
area beneath the curve indicated in blue is only 1 / 2 of 
this value so the average height of the curve is 1 / 2 of its 
peak value meaning that the average value of the energy 
density in this interval is 2.3687(10-5) Joule·m-3. (This is 
just an illustration of the fact that the average value of 
cos2 over one period is 1 / 2.) Here is the punch line. The 
total energy in the wave for this one-wavelength interval 
is the average energy density in the wave multiplied by 
the volume occupied by the wave. This is Sl<e> where  
<e> is the average value of the acoustic energy density. 
Calling this energy W, we have

2
-5 -3

-9

.0254mW = S <  > = (0.344m)(2.3687)(10 ) Joule•m
2

     =4.1288(10 ) Joule

λ π  
 
 

e

This is just the amount of energy supplied by the 
piston in the previous 0.001 second!

Next time we will investigate wave intensity and 
how to build a simple, practical plane wave tube.  ep

Figure 4. Acoustic energy density at t = 0.001 sec for 
a one-wavelength interval along the z-axis.
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