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BY Dr. Eugene patronis

What is Waving
and Why?

 The Anatomy of the Wave Equation - Part 2

In the first article in this series we learned the compo-
sitional properties of the gaseous mixture known as dry 
air as it exists under standard atmospheric conditions. 
We also explored the thermodynamic properties of air 
and the behavior of air while undergoing compression 
or expansion in either the isothermal or adiabatic pro-
cess. We concluded the article with a sample calculation 
wherein the concept of acoustic pressure was introduced 
and used in the calculation of acoustic potential energy.

You will recall that the acoustic pressure is given by 
p = P - P0. In this equation, p is the acoustic pressure at 
some point in space and some instant in time. Similarly, 
P is the disturbed total atmospheric pressure at the same 
point in space and the same instant in time while P0 is 
the static or undisturbed atmospheric pressure at the lo-
cation of interest.

The acoustic pressure is perhaps the premier acous-
tic variable. The root mean square value of the acoustic 
pressure at a particular location expressed in Pascals is 
what is used in determining the sound pressure level at 
that location through the relationship
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There are, however, many other important acoustic 
variables whose values depend upon location in both 

space and in time. A listing of the ones to be employed 
in this article appears in Table 1.

Table 1 introduces three acoustic variables that 
we have not yet discussed. The acoustic condensation 
symbolized by s is simply the ratio of the change in air 
density brought about by an acoustic disturbance to the 
normal static or undisturbed air density as expressed by 
the equation

	

0

0

s r r
r
−

=

In this equation the Greek letter rho, r, represents 
the total density of air under the disturbed condition 
while r0 represents the undisturbed or static air den-
sity. The acoustic variable that is termed the particle 
displacement and is symbolized by the Greek letter xi, 
x, will require a more lengthy explanation. The ques-
tion that immediately arises is what constitutes an air 
particle? It cannot be a single molecule as air is always 
composed of a collection of a variety of molecules in the 
proportions tabulated in the first article of this series of 
articles. The particle size, whatever its value, must be 
sufficiently large so as to encompass millions of mol-
ecules in order to yield valid statistical averages and thus 
behave as an apparently continuous fluid while at the 

Name of Variable Symbol Unit
Acoustic Pressure p Pascal

Air Density r kg ·m-3

Condensation s dimensionless
Particle Displacement x m

Particle Velocity u m ·sec-1

Table 1. A partial listing of acoustic variables.
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same time it must be small enough that the acoustic vari-
ables are essentially constant throughout the volume oc-
cupied by the particle. This latter condition requires the 
dimensions of the particle to be very much smaller than 
any sound wavelength under consideration. Let’s do a 
simple calculation in order to determine a reasonable 
size for what we will call an air particle. What volume 
would say two million molecules of air occupy under 
standard conditions? We learned in the first article that 
Avogadro’s number of molecules would occupy about 
0.0224 m3 under standard conditions. If we consider a 
cube of edge dimension l then by simple proportion we 
can write 
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When this is solved for l the result is found to be 
4.2(10-7) meter. This distance is orders of magnitude 
smaller than the wavelengths encountered in air even at 
ultrasonic frequencies so both of our requirements are 
satisfied. We might even round this number upward to 
a value easier to remember and say that an air particle 
is that amount of air under standard conditions that oc-
cupies a cube having an edge dimension of about 0.5 
micron. When we consider such a small cubical volume 
of air that we now will call an air particle we realize 
that even in the absence of an acoustical disturbance, the 
air molecules are constantly undergoing random ther-
mal motion. As a result of this thermal motion, some 
molecules move out of the volume but other molecules 
having the same properties also move into the volume. 
The volume has been chosen large enough so that the 
randomness of the thermal motion averages to zero so 
that in effect the air contained in the particle is at rest. 
An acoustical disturbance, as we shall see, imposes a 
preferred direction of motion and thus can bring about 
a displacement of the air particle as a whole. Particle 
displacement is a vector quantity and as such has both a 
magnitude and a direction that are measured relative to 
a coordinate frame of reference. In addition to particle 
displacement we will also be concerned with another 
acoustic variable that describes the instantaneous rate at 
which the particle displacement changes with time. This 
is a vector quantity also and is called the particle veloc-
ity. As the table indicates the symbol employed for the 
particle velocity is the letter u.

In the absence of any acoustical disturbance the 
acoustic variables of Table 1 are all zero with the ex-
ception of r for which the value becomes the static at-
mosphere value r0. When an acoustical disturbance is 

present all of the acoustic variables listed in the table 
will have values that depend upon both location in space 
and time. For simplicity let’s center our attention on just 
the acoustic pressure as an example. Mathematically we 
say that the acoustic pressure is a function of the posi-
tional coordinates and time. If we were employing gen-
eral Cartesian coordinates this mathematical statement 
would be written in the manner,

p = p(x,y,z,t).

The entry immediately above is read as, “The acous-
tic pressure is a function of x, y, z, and t.” It does not tell 
you what particular mathematical function but only that 
there is such a function. In certain situations not all spa-
tial coordinates may be involved. If the acoustic pressure 
depends only on the z coordinate and time then p = p(z,t) 
would be appropriate. From either theory or experiment 
we may find what the particular mathematical functional 
dependence is. For example, the answer might be

p = pmcos(wt – kz).

In this answer pm, w, and k are constants and we are 
informed that the acoustic pressure varies as the cosine 
of the difference of two angles one of which is directly 
proportional to time and the other of which is directly 
proportional to the value of the z coordinate. As we shall 
see shortly this function describes a plane wave propa-
gating in the direction of increasing values of the z co-

Figure 1. Cartesian to cylindrical conversion. The z 
axis points toward the reader.
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ordinate.
Now that we have covered the preliminaries, we 

turn our attention to a physical system of some impor-
tance consisting of a long, rigid-wall air filled pipe. The 
inner diameter of the pipe is d, its inner radius is a. The 
interior wall is smooth and the pipe is straight. The wall 
thickness of the pipe is immaterial as long as it is reason-
ably rigid. We will employ cylindrical coordinates for 
locating positions in the pipe. These are the coordinates 
best suited for such a structure. In cylindrical coordi-
nates space points are located by the variables r, q and z. 
The z coordinate is familiar from the usual Cartesian set. 
The relationship between r, q and the familiar x, y can be 
extracted by viewing Fig. 1.

	 We have selected an air filled pipe as the starting 
point for our discussion of acoustic waves because of the 
ease with which the simplest of wave motions, namely 
plane waves, can be established in such a structure. Our 
first step will be to concentrate on a small mass of air in 
the pipe under static conditions and on the same mass of 
air after it has been acoustically disturbed. The physical 
situation is depicted in Fig.2.

The pipe has an inner cross-sectional area S = pa2. 
The undisturbed air is that contained in the cylindrical 
volume between the planes defined by z and z + Dz. The 
mass, m, of this air is the static air density multiplied by 
the volume of the blue cylinder.

m = r0SDz

Imagine now that a closely fitting piston is inserted 
into the pipe on the left and quickly displaces the air 
particles that were originally on the plane at z to the 
new red planar position z + x such that all of the air 
particles that were originally at z are now located at z 
+ x. In other words, the air particles originally located 
at the spatial coordinate z have undergone an amount 

of displacement equal to x. Note also that the particle 
displacement does not depend on the spatial coordinates 
r or q. All air particles having a particular value of the z 
coordinate are displaced the same amount such that the 
particle displacement depends only on z and on time, 
t. Now if air were incompressible, all of the particles 
originally on the plane at z + Dz would be displaced to a 
new plane at z + Dz + x. Air is compressible however, so 
we must allow for the particle displacement to undergo 
a change over the space interval of Dz so that the right 
extremity of our disturbed mass of air is located at z + 
Dz + x + Dx. Our original mass of air is now contained 
in the cylinder defined by the two red planes. The air 
has been compressed as a result of the piston motion. 
As a consequence, the volume of the disturbed cylinder 
is slightly less than that of the undisturbed one and this 
simply requires that Dx be a negative number. The mass 
of air was conserved in the process so the density of air 
in the disturbed cylinder has increased. The volume of 
the undisturbed cylinder is SDz while that of the dis-
turbed cylinder is S(Dz + Dx) so we may write
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This equation readily simplifies to
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In words this last equation says that the undisturbed 
density of air is equal to the disturbed density multiplied 
by one plus the average slope of the particle displace-
ment function over the interval Dz. This slope is nega-
tive however as the particle displacement decreases as z 
increases and thus the number in the parenthesis is less 
than one. The average slope is not good enough. We need 

z z + z

z + z + z + 

Figure 2. Undisturbed (blue) and disturbed (red) air mass in a long rigid pipe.
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to make our calculation independent of our choice of the 
size of Dz. At this point I recognize that many readers 
have not had an opportunity to study calculus much less 
partial differential equations. Both of these are required 
in order to do a rigorous derivation of the wave equation. 
In much of the following then, I will substitute word de-
scriptions for what is going on rather than adhering to 
pure mathematical formalism. In the density equation 
above we take successively smaller and smaller sizes for 
Dz or in other words let Dz approach zero all the while 
studying the ratio Dx/Dz and look to see what limiting 
value is approached by the quotient of Dx/Dz. This limit 
is called the partial derivative of the particle displace-
ment with respect to the z coordinate and the density 
relation is then written as

0 �
z
x
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The reason for doing this is to find the value of the 
disturbed air density in the immediate vicinity of the 
point z and at time t. Among other things, we want to 
learn how the air density behaves under disturbed condi-
tions as a function of position and time. This last equa-
tion tells us how to calculate the density behavior once 
we know how the particle displacement behaves. Recall 
that the condensation is given by

0
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This can be solved for the disturbed density to yield 
r = r0(1 + s). This is now substituted in the density rela-
tion to yield
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In order for the remainder of our development to 
be as simple as possible we must restrict the size of the 
acoustical disturbance to that for which the air behaves 
as a linear medium. Even with this restriction the equa-
tions that we develop will accommodate sound pressure 
levels up to 120 dB with little error. With this restriction, 

we can observe that in the last equation written above 
both s and the partial derivative of the displacement with 
respect to z are small quantities individually and that the 
product of the two of them is very small indeed. Hence 
neglecting the product term introduces negligible error. 
This final equation can then be rewritten as

s
z
x∂

= −
∂

In the first article in this series we learned that for 
small disturbances the acoustic pressure is given by

p = c2(r - r0)

and in terms of the condensation this may be written as

p = r0c
2s

Alternatively, we may express the acoustic pressure 
as

2
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One other observation is appropriate at this point. 
The particle displacement, x, is in general a function of 
both z and t. This means that x = x(z,t). In fact, one of 
our objectives is to find the exact nature of this function 
for a given type of acoustical excitation. Once we deter-
mine the nature of this function we can determine the 
value of the particle displacement for any value of the 
spatial coordinate z and time coordinate t. Additionally 
we will also be able to determine the particle velocity, 
u, as the particle velocity at any particular value of the 
z coordinate and time t is the rate at which the particle 
displacement is changing with time at the fixed value of 
z. The particle velocity is given by the partial derivative 
of the particle displacement with respect to time and is 
given by

u
t
x∂

=
∂

Similarly, the local particle acceleration or rate of 
change of velocity is calculated from

2
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u
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Thus far we have required only a few definitions, 
the law of conservation of mass, and knowledge of the 
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behavior of air while undergoing small adiabatic com-
pression or expansion. Now with the help of Sir Isaac 
Newton’s second law of motion we will be able to fi-
nally arrive at the plane wave equation. First we must 
list the forces that could possibly affect the air particle 
motion in the tube. The principal force is that exerted 
by the piston as it first begins to compress the air at the 
left face of our undisturbed cylinder of air as depicted in 
Fig. 3. The pressure exerted by the piston must exceed 
static atmospheric pressure in order to produce compres-
sion so we write this as (P0 + p)S where p is the acoustic 
pressure at z. Similarly, the pressure at the right face is 
the static pressure plus the acoustic pressure at the right 
face which we must allow to be different from that at 
the left face. We write the force at the right face then as 
(P0 + p + Dp)S. In principle, the force of gravity would 
tend to make the static pressure at the bottom of the tube 
minutely greater than that at the top. This effect is in-
significant for tubes of ordinary diameters. Finally, we 
should mention the possibility of viscous effects. Vis-
cous frictional forces occur principally at the tube walls 
and manifest themselves as a small attenuation in very 
long tubes. We will neglect such effects for reasons of 
simplicity.

 From Fig. 3, the net force in the positive z direc-
tion is - DpS. According to Newton’s second law the net 
force acting on the mass of air in the element must be 
equated to the mass multiplied by the acceleration or
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Upon canceling common factors and taking the 
limit as we have done in a previous case this equation 
becomes
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In words this result says that the negative of the 
space rate of change of the acoustic pressure at a given 
point and time is the undisturbed density of air multi-
plied by the particle acceleration at the same space point 
and time t.

Two more steps and we will be at the punch line. 
One of our previous results while studying the particle 
displacement was
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From this relation we need to calculate the space 
rate of change or the slope of the acoustic pressure. This 
is done by calculating the partial derivative with respect 
to the z coordinate on both sides of the equation. The 
result is

2
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This is now substituted into the equation derived 
employing Newton’s second law to produce 
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This second order partial differential equation is 
the governing equation for plane waves that depend on 
only one space coordinate and time as the independent 
variables. The dependent variable in this instance is 
the air particle displacement. Instead of concentrating 
on the particle displacement as the dependent variable, 
we could have just as well done a parallel development 
while centering our attention on the acoustic pressure to 
obtain

Figure 3. Forces acting on undisturbed element at the onset of compression by 
the piston. S is the cross-sectional area of the pipe.
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In other words, the acoustic pressure and the particle 
displacement are governed by the same partial differ-
ential equation. In order for some mathematical func-
tion to be a solution to a physical circumstance involv-
ing the plane wave equation it must accomplish three 
things. Firstly, when substituted into the wave equation 
it must yield an identity. Secondly, it must satisfy the 
conditions that exist at t = 0. Finally, it must satisfy the 
conditions that exist at the coordinate boundaries for all 
values of t ≥ 0. There are many functions that satisfy 
the first condition. In fact, there are an infinite num-
ber of such functions. All of these functions, however, 
have one feature in common and that is whenever the 
space and time independent variables appear in one of 
the functions, this appearance must be of the form (ct ± 
z). The two other requirements play the role of sorting 
through this infinite set to find the one and only solution 
that fits the problem at hand. We are assured that there 
is only one genuine solution to the wave equation that 
satisfies the three stated requirements because of the ex-
istence of a uniqueness theorem governing solutions to 
the wave equation. In order to make this really meaning-
ful, we must seek a solution to this equation for a realiz-
able physical circumstance. First, let’s illustrate the sig-
nificance of (ct ± z). Suppose we have a very long plane 
wave tube with the origin of coordinates at the mid-point 
of the tube. Further suppose at t = 0 that some distur-

bance produces an acoustic pressure matching only the 
blue curve in Fig. 4.

Refer now to Fig. 4 and imagine that only the blue 
curve is present. This would represent the first frame of 
a movie describing the acoustic pressure versus time and 
position in space. The second frame would show the ini-
tial disturbance beginning to split into two equal parts 
with one part displaced slightly to the left and the other 
displaced an equal amount to the right. Many frames 
later, the blue curve would no longer be present and the 
two red curves would represent a snapshot at the instant 
when ct = 4 meters. In other words the initial static distur-
bance has evolved into two traveling disturbances mov-
ing in opposite directions along the z-axis. The functions 
involved would be p+ = p(ct –z) and p- = p(ct + z). Let’s 
concentrate on just the p+ term. If we are to always ob-
serve the same peak pressure for this term, what must we 
do as an observer? Remember that we have no control 
over time. It increases uniformly whether we want it to 
or not. As ct increases uniformly then we must increase 
our location on the z-axis at the same rate such that ct 
– z maintains a value of, in this case, zero. The rate at 
which ct increases is the speed of sound, c. Therefore an 
observer must race in the direction of increasing z with 
a speed equal to c in order to keep up with the pressure 
pulse on the right. Similarly, an observer must race in 
the direction of decreasing z with a speed c in order to 
keep up with the pressure pulse on the left. 

In part 3 of this series we will solve the wave equa-
tion for a plane wave tube excited by a periodic piston 
motion at one end and study the acoustical energy trans-
port in the tube.  ep
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Figure 4. Plane wave tube with 
an initial disturbance (blue) at its 
center.
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